快乐学习
前程无忧、中华英才非你莫属!

spark streaming知识总结[优化]

spark streaming知识总结[优化]

原创2017-03-22pig2about云

问题导读1.DStreams的含义是什么?2.DStreams提供哪两种类型的操作?3.Transformations操作分为哪两种类型?4.本文说了哪些输入源?5.什么是batch?本篇做了一些细节优化,防止初学者在看到的时候,造成误解.如有问题,欢迎交流RDD与job之间的关系Spark Streaming是构建在Spark上的实时流计算框架,扩展了Spark流式大数据处理能力。Spark Streaming将数据流以时间片为单位分割形成RDD,使用RDD操作处理每一块数据,每块数据(也就是RDD)都会生成一个Spark Job进行处理,最终以批处理的方式处理每个时间片的数据

说明:Spark中的Job和MR中Job不一样不一样。MR中Job主要是Map或者Reduce Job。而Spark的Job其实很好区别,RDD一个action算子就算一个Job.

什么是batchSpark Streaming生成新的batch并对它进行一些处理,每个batch中的数据都代表一个RDD理解batch间隔时间开始会创建,间隔时间内会积累设置时间间隔的理解我们知道spark streaming有个时间间隔。假如间隔为1秒,它是停下1秒,然后在接受1秒的数据,也就是说是间隔1秒,然后在接受1秒数据,还是说接受1秒的数据。这里表面上没有太大的区别,其实在于理解的到不到位。说白了batch封装的是1秒的数据。

batch创建batch在时间间隔开始被创建,在间隔时间内任何到达的数据都被添加到批数据中,间隔时间结束,batch创建结束。什么是batch间隔参数间隔时间大小的参数被称之为batch间隔参数batch间隔范围一般为500 毫秒到几分钟,由开发者定义。spark streaming应用spark streaming应用程序可以实时跟踪页面统计,训练机器学习模型或则自动检测异常,更多推荐参考让你真正明白spark streaminghttp://www.aboutyun.com/forum.php?mod=viewthread&tid=21141DStreams详解

DStreams是discretized streams的缩写,是离散流的意思。

DStreams是随着时间【推移】到达的一系列数据

每个dstream被表示为一个序列的RDDS(因此名称“离散”)。

DStreams可以不同的数据源创建,比如flume,kafka,或则hdfs.一旦构建,

DStreams提供两种类型的操作:

transformations,产生一个新的DStream

output operations,写数据到外部系统。

DStreams提供许多与RDD相同的操作,外加一些关于时间的操作比如slidingwindows【滑动窗口】。

DStreams来源

1.外部数据源

2.通过transformations转换而来

Transformations操作

分为有状态和无状态Stateful transformations需要checkpointing,在StreamingContext中启用容错。设置checkpointingssc.checkpoint("hdfs://...")Windowed transformationswindow操作需要两个参数,窗口持续时间和滑动持续时间。这两个必须是多个StreamingContext的batch时间区间。DStream数据源时间间隔是10秒。想创建滑动窗口上一个30秒(或则上3batches)),我们应该设置windowDuration30秒。sliding时间间隔,默认是batch时间间隔,控制DStream刷新计算结果。如果我们的DStream batch时间区间为10秒,我们想计算我们的window,只能在每个第二batch。我们设置我们的sliding间隔为20秒。输出操作保存DStream 为文本文件【Scala】 

[Scala] 

ipAddressRequestCount.saveAsTextFiles("outputDir", "txt")

saveAsHadoopFiles()是hadoop输出格式,例如Spark Streaming没有SaveAsSequenceFile()函数,我们可以保存为SequenceFilesScala

 

val writableIpAddressRequestCount = ipAddressRequestCount.map {

(ip, count) => (new Text(ip), new LongWritable(count)) }

writableIpAddressRequestCount.saveAsHadoopFiles[

SequenceFileOutputFormat[Text, LongWritable]]("outputDir", "txt")

Java

JavaPairDStream<Text, LongWritable> writableDStream = ipDStream.mapToPair(

new PairFunction<Tuple2<String, Long>, Text, LongWritable>() {

public Tuple2<Text, LongWritable> call(Tuple2<String, Long> e) {

return new Tuple2(new Text(e._1()), new LongWritable(e._2()));

}});

class OutFormat extends SequenceFileOutputFormat<Text, LongWritable> {};

writableDStream.saveAsHadoopFiles(

"outputDir", "txt", Text.class, LongWritable.class, OutFormat.class);

foreachRDD()

ipAddressRequestCount.foreachRDD { rdd =>

rdd.foreachPartition { partition =>

// Open connection to storage system (e.g. a database connection)

partition.foreach { item =>

// Use connection to push item to system

}

// Close connection

}

}

checkpointing机制spark streaming主要机制checkpointing,它将数据存储在一个可靠的文件系统,比如hdfs.checkpoint的作用,用于恢复数据。它会定期保存状态到可靠的文件系统比如hdfs,s3比如你每5-10批数据设置checkpointing。当发生丢失数据的时候,Spark Streaming讲恢复最近的checkpoint.随着 streaming application 的持续运行,checkpoint 数据占用的存储空间会不断变大。因此,需要小心设置checkpoint 的时间间隔。设置得越小,checkpoint 次数会越多,占用空间会越大;如果设置越大,会导致恢复时丢失的数据和进度越多。一般推荐设置为 batch duration 的5~10倍。输入源spark streaming支持多个数据源,一些核心的数据源,已被构建到Streaming Maven artifact,其它可以通过额外的artifact,比如spark-streaming-kafka.核心数据源比如sockets,还有文件 和 Akka actors.其它数据源使用kafka必须引入artifact:spark-streaming-kafka_2.10到项目中。它提供KafkaUtils对象,通过StreamingContext 和 JavaStreamingContext创建kafka消息的DStream.因为它订阅多个topic. DStream创建由topic 和 message组成的对。我们可以调用createStream()方法来创建Stream。字符串分割开ZooKeeper hosts, consumer group的名称(唯一的名字),receiver 线程用于topic.Apache Kafka 订阅Panda的topic【Scala】

import org.apache.spark.streaming.kafka._

...

// Create a map of topics to number of receiver threads to use

val topics = List(("pandas", 1), ("logs", 1)).toMap

val topicLines = KafkaUtils.createStream(ssc, zkQuorum, group, topics)

StreamingLogInput.processLines(topicLines.map(_._2))

Apache Kafka 订阅 to Panda’s topic【Java】 

import org.apache.spark.streaming.kafka.*;

...

// Create a map of topics to number of receiver threads to use

Map<String, Integer> topics = new HashMap<String, Integer>();

topics.put("pandas", 1);

topics.put("logs", 1);

JavaPairDStream<String, String> input =

KafkaUtils.createStream(jssc, zkQuorum, group, topics);

input.print();

推荐参照文章让你真正明白spark streaminghttp://www.aboutyun.com/forum.php?mod=viewthread&tid=21141转载注明来自about云(www.aboutyun.comhttp://www.aboutyun.com/forum.php?mod=viewthread&tid=21307

阅读原文

打赏
赞(0) 打赏
未经允许不得转载:同乐学堂 » spark streaming知识总结[优化]

特别的技术,给特别的你!

联系QQ:1071235258QQ群:710045715

觉得文章有用就打赏一下文章作者

非常感谢你的打赏,我们将继续给力更多优质内容,让我们一起创建更加美好的网络世界!

支付宝扫一扫打赏

微信扫一扫打赏

error: Sorry,暂时内容不可复制!